Suprema of compound Poisson processes with light tails

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremes of Lévy Processes with Light Tails

Let X(t) t ≥ 0 , X(0) = 0, be a Lévy process with spectral Lévy measure ρ. Assuming that ρ((−∞, 0)) < ∞ and the right tail of ρ is light, we show that in the presence of Brownian component P „ sup 0≤t≤1 X(t) > u « ∼ P (X(1) > u) as u → ∞. In the absence of Brownian component these tails are not always comparable. An example of Lévy process of the type X(t) = B(t) + Z(t), where B(t) is a Brownia...

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

Poisson processes , ordinary and compound

The Poisson process is a stochastic counting process that arises naturally in a large variety of daily-life situations. We present a few definitions of the Poisson process and discuss several properties as well as relations to some well-known probability distributions. We further briefly discuss the compound Poisson process.

متن کامل

Alternative Forms of Compound Fractional Poisson Processes

and Applied Analysis 3 where the first term refers to the probability mass concentrated in the origin, δ y denotes the Dirac delta function, and fYβ denotes the density of the absolutely continuous component. The function gYβ given in 1.5 satisfies the following fractional master equation, that is, ∂ ∂tβ gYβ ( y, t ) −λgYβ ( y, t ) λ ∫ ∞ −∞ gYβ ( y − x, t ) fX x dx, 1.6 where ∂/∂t is the Caputo...

متن کامل

The Disorder Problem for Compound Poisson Processes with Exponential Jumps

The problem of disorder seeks to determine a stopping time which is as close as possible to the unknown time of ’disorder’ when the observed process changes its probability characteristics. We give a partial answer to this question for some special cases of Lévy processes and present a complete solution of the Bayesian and variational problem for a compound Poisson process with exponential jump...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 2000

ISSN: 0304-4149

DOI: 10.1016/s0304-4149(00)00039-9